Create a K-Means Clustering Algorithm from Scratch in Python (2024)

k-means clustering is an unsupervised machine learning algorithm that seeks to segment a dataset into groups based on the similarity of datapoints. An unsupervised model has independent variables and no dependent variables.

Suppose you have a dataset of 2-dimensional scalar attributes:

Create a K-Means Clustering Algorithm from Scratch in Python (3)

If the points in this dataset belong to distinct groups with attributes significantly varying between groups but not within, the points should form clusters when plotted.

Create a K-Means Clustering Algorithm from Scratch in Python (4)

Figure 1: A dataset of points with groups of distinct attributes.

This dataset clearly displays 3 distinct classes of data. If we seek to assign a new data point to one of these three groups, it can be done by finding the midpoint of each group (centroid) and selecting the nearest centroid as the group of the unassigned data point.

Create a K-Means Clustering Algorithm from Scratch in Python (5)

Figure 2: The data points are segmented into groups denoted with differing colors.

For a given dataset, k is specified to be the number of distinct groups the points belong to. These k centroids are first randomly initialized, then iterations are performed to optimize the locations of these k centroids as follows:

  1. The distance from each point to each centroid is calculated.
  2. Points are assigned to their nearest centroid.
  3. Centroids are shifted to be the average value of the points belonging to it. If the centroids did not move, the algorithm is finished, else repeat.

To evaluate our algorithm, we’ll first generate a dataset of groups in 2-dimensional space. The sklearn.datasets function make_blobs creates groupings of 2-dimensional normal distributions, and assigns a label corresponding to the group said point belongs to.

import seaborn as sns
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
centers = 5
X_train, true_labels = make_blobs(n_samples=100, centers=centers, random_state=42)
X_train = StandardScaler().fit_transform(X_train)
sns.scatterplot(x=[X[0] for X in X_train],
y=[X[1] for X in X_train],
hue=true_labels,
palette="deep",
legend=None
)
plt.xlabel("x")
plt.ylabel("y")
plt.show()
Create a K-Means Clustering Algorithm from Scratch in Python (6)

Figure 3: The dataset we will use to evaluate our k means clustering model.

This dataset provides a unique demonstration of the k-means algorithm. Observe the orange point uncharacteristically far from its center, and directly in the cluster of purple data points. This point cannot be accurately classified as belonging to the right group, thus even if our algorithm works well it should incorrectly characterize it as a member of the purple group.

We’ll need to calculate the distances between a point and a dataset of points multiple times in this algorithm. To do so, lets define a function that calculates Euclidean distances.

def euclidean(point, data):
"""
Euclidean distance between point & data.
Point has dimensions (m,), data has dimensions (n,m), and output will be of size (n,).
"""
return np.sqrt(np.sum((point - data)**2, axis=1))

First, the k-means clustering algorithm is initialized with a value for k and a maximum number of iterations for finding the optimal centroid locations. If a maximum number of iterations is not considered when optimizing centroid locations, there is a risk of running an infinite loop.

class KMeans: def __init__(self, n_clusters=8, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter

Now, the bulk of the algorithm is performed when fitting the model to a training dataset.

First we’ll initialize the centroids randomly in the domain of the test dataset, with a uniform distribution.

# Randomly select centroid start points, uniformly distributed across the domain of the dataset
min_, max_ = np.min(X_train, axis=0), np.max(X_train, axis=0)
self.centroids = [uniform(min_, max_) for _ in range(self.n_clusters)]

Next, we perform the iterative process of optimizing the centroid locations.

The optimization process is to readjust the centroid locations to be the means of the points belonging to it. This process is to repeat until the centroids stop moving, or the maximum number of iterations is passed. We’ll use a while loop to account for the fact that this process does not have a fixed number of iterations. Additionally, you could also use a for loop that repeats max_iter times and breaks when the centroids stop changing.

Before beginning the while loop, we’ll initialize the variables used in the exit conditions.

iteration = 0
prev_centroids = None

Now, we begin the loop. We’ll iterate through the data points in the training set, assigning them to an initialized empty list of lists. The sorted_points list contains one empty list for each centroid, where data points are appended once they’ve been assigned.

while np.not_equal(self.centroids, prev_centroids).any() and iteration < self.max_iter:
# Sort each data point, assigning to nearest centroid
sorted_points = [[] for _ in range(self.n_clusters)]
for x in X_train:
dists = euclidean(x, self.centroids)
centroid_idx = np.argmin(dists)
sorted_points[centroid_idx].append(x)

Now that we’ve assigned the whole training dataset to their closest centroids, we can update the location of the centroids and finish the iteration.

# Push current centroids to previous, reassign centroids as mean of the points belonging to them
prev_centroids = self.centroids
self.centroids = [np.mean(cluster, axis=0) for cluster in sorted_points]
for i, centroid in enumerate(self.centroids):
if np.isnan(centroid).any(): # Catch any np.nans, resulting from a centroid having no points
self.centroids[i] = prev_centroids[i]
iteration += 1

After the completion of the iteration, the while conditions are checked again, and the algorithm will continue until the centroids are optimized or the max iterations are passed. The full fit method is included below.

class KMeans: def __init__(self, n_clusters=8, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter
def fit(self, X_train): # Randomly select centroid start points, uniformly distributed across the domain of the dataset
min_, max_ = np.min(X_train, axis=0), np.max(X_train, axis=0)
self.centroids = [uniform(min_, max_) for _ in range(self.n_clusters)]
# Iterate, adjusting centroids until converged or until passed max_iter
iteration = 0
prev_centroids = None
while np.not_equal(self.centroids, prev_centroids).any() and iteration < self.max_iter:
# Sort each datapoint, assigning to nearest centroid
sorted_points = [[] for _ in range(self.n_clusters)]
for x in X_train:
dists = euclidean(x, self.centroids)
centroid_idx = np.argmin(dists)
sorted_points[centroid_idx].append(x)
# Push current centroids to previous, reassign centroids as mean of the points belonging to them
prev_centroids = self.centroids
self.centroids = [np.mean(cluster, axis=0) for cluster in sorted_points]
for i, centroid in enumerate(self.centroids):
if np.isnan(centroid).any(): # Catch any np.nans, resulting from a centroid having no points
self.centroids[i] = prev_centroids[i]
iteration += 1

Lastly, lets make a method to evaluate a set of points to the centroids we’ve optimized to our training set. This method returns the centroid and the index of said centroid for each point.

def evaluate(self, X):
centroids = []
centroid_idxs = []
for x in X:
dists = euclidean(x, self.centroids)
centroid_idx = np.argmin(dists)
centroids.append(self.centroids[centroid_idx])
centroid_idxs.append(centroid_idx)
return centroids, centroid_idx

Now we can finally deploy our model. Lets train and test it on our original dataset and see the results. We’ll keep our original method of plotting our data, by separating the true labels by color, but now we’ll additionally separate the predicted labels by marker style, to see how the model performs.

kmeans = KMeans(n_clusters=centers)
kmeans.fit(X_train)
# View results
class_centers, classification = kmeans.evaluate(X_train)
sns.scatterplot(x=[X[0] for X in X_train],
y=[X[1] for X in X_train],
hue=true_labels,
style=classification,
palette="deep",
legend=None
)
plt.plot([x for x, _ in kmeans.centroids],
[y for _, y in kmeans.centroids],
'+',
markersize=10,
)
plt.show()
Create a K-Means Clustering Algorithm from Scratch in Python (7)

Figure 4: A failed example where one centroid has no points, and one contains two clusters.

Create a K-Means Clustering Algorithm from Scratch in Python (8)

Figure 5: A failed example where one centroid has no points, two contains two clusters, and two split one cluster.

Create a K-Means Clustering Algorithm from Scratch in Python (9)

Figure 6: A failed example where two centroids contain one and a half clusters, and two centroids split a cluster.

Looks like our model isn’t performing very well. We can infer two primary problems from these three failed examples.

  1. If a centroid is initialized far from any groups, it is unlikely to move. (Example: the bottom right centroid in Figure 4.)
  2. If centroids are initialized too close, they’re unlikely to diverge from one another. (Example: the two centroids in the green group in Figure 6.)

We’ll begin to remedy these problems with a new process of initializing the centroid locations. This new method is referred to as the k-means++ algorithm.

  1. Initialize the first centroid as a random selection of one of the data points.
  2. Calculate the sum of the distances between each data point and all the centroids.
  3. Select the next centroid randomly, with a probability proportional to the total distance to the centroids.
  4. Return to step 2. Repeat until all centroids have been initialized.

This code is included below.

# Initialize the centroids, using the "k-means++" method, where a random datapoint is selected as the first,
# then the rest are initialized w/ probabilities proportional to their distances to the first
# Pick a random point from train data for first centroid
self.centroids = [random.choice(X_train)]
for _ in range(self.n_clusters-1):
# Calculate distances from points to the centroids
dists = np.sum([euclidean(centroid, X_train) for centroid in self.centroids], axis=0)
# Normalize the distances
dists /= np.sum(dists)
# Choose remaining points based on their distances
new_centroid_idx, = np.random.choice(range(len(X_train)), size=1, p=dists)
self.centroids += [X_train[new_centroid_idx]]

If we run this new model a few times we’ll see it performs much better, but still not always perfect.

Create a K-Means Clustering Algorithm from Scratch in Python (10)

Figure 7: An ideal convergence, after implementing the k-means++ initialization method.

And with that, we’re finished. We learned a simple, yet elegant implementation of an unsupervised machine learning model. The complete project code is included below.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler
from numpy.random import uniform
from sklearn.datasets import make_blobs
import seaborn as sns
import random
def euclidean(point, data):
"""
Euclidean distance between point & data.
Point has dimensions (m,), data has dimensions (n,m), and output will be of size (n,).
"""
return np.sqrt(np.sum((point - data)**2, axis=1))
class KMeans: def __init__(self, n_clusters=8, max_iter=300):
self.n_clusters = n_clusters
self.max_iter = max_iter
def fit(self, X_train): # Initialize the centroids, using the "k-means++" method, where a random datapoint is selected as the first,
# then the rest are initialized w/ probabilities proportional to their distances to the first
# Pick a random point from train data for first centroid
self.centroids = [random.choice(X_train)]
for _ in range(self.n_clusters-1):
# Calculate distances from points to the centroids
dists = np.sum([euclidean(centroid, X_train) for centroid in self.centroids], axis=0)
# Normalize the distances
dists /= np.sum(dists)
# Choose remaining points based on their distances
new_centroid_idx, = np.random.choice(range(len(X_train)), size=1, p=dists)
self.centroids += [X_train[new_centroid_idx]]
# This initial method of randomly selecting centroid starts is less effective
# min_, max_ = np.min(X_train, axis=0), np.max(X_train, axis=0)
# self.centroids = [uniform(min_, max_) for _ in range(self.n_clusters)]
# Iterate, adjusting centroids until converged or until passed max_iter
iteration = 0
prev_centroids = None
while np.not_equal(self.centroids, prev_centroids).any() and iteration < self.max_iter:
# Sort each datapoint, assigning to nearest centroid
sorted_points = [[] for _ in range(self.n_clusters)]
for x in X_train:
dists = euclidean(x, self.centroids)
centroid_idx = np.argmin(dists)
sorted_points[centroid_idx].append(x)
# Push current centroids to previous, reassign centroids as mean of the points belonging to them
prev_centroids = self.centroids
self.centroids = [np.mean(cluster, axis=0) for cluster in sorted_points]
for i, centroid in enumerate(self.centroids):
if np.isnan(centroid).any(): # Catch any np.nans, resulting from a centroid having no points
self.centroids[i] = prev_centroids[i]
iteration += 1
def evaluate(self, X):
centroids = []
centroid_idxs = []
for x in X:
dists = euclidean(x, self.centroids)
centroid_idx = np.argmin(dists)
centroids.append(self.centroids[centroid_idx])
centroid_idxs.append(centroid_idx)
return centroids, centroid_idxs
# Create a dataset of 2D distributions
centers = 5
X_train, true_labels = make_blobs(n_samples=100, centers=centers, random_state=42)
X_train = StandardScaler().fit_transform(X_train)
# Fit centroids to dataset
kmeans = KMeans(n_clusters=centers)
kmeans.fit(X_train)
# View results
class_centers, classification = kmeans.evaluate(X_train)
sns.scatterplot(x=[X[0] for X in X_train],
y=[X[1] for X in X_train],
hue=true_labels,
style=classification,
palette="deep",
legend=None
)
plt.plot([x for x, _ in kmeans.centroids],
[y for _, y in kmeans.centroids],
'k+',
markersize=10,
)
plt.show()

Thanks for reading!
Connect with me on LinkedIn
See this project in GitHub

Create a K-Means Clustering Algorithm from Scratch in Python (2024)

References

Top Articles
Roblox Multiplication Tutoring 1-on-1: Play Games and Earn Robux
Geometry Spot on Roblox: Merging Fun and Learning in a Virtual World
3 Tick Granite Osrs
Great Clips Mount Airy Nc
Exclusive: Baby Alien Fan Bus Leaked - Get the Inside Scoop! - Nick Lachey
Forozdz
Safety Jackpot Login
Best Big Jumpshot 2K23
J & D E-Gitarre 905 HSS Bat Mark Goth Black bei uns günstig einkaufen
FFXIV Immortal Flames Hunting Log Guide
PRISMA Technik 7-10 Baden-Württemberg
Activities and Experiments to Explore Photosynthesis in the Classroom - Project Learning Tree
Obituaries
Rainfall Map Oklahoma
Whitley County Ky Mugshots Busted
Jasmine Put A Ring On It Age
Washington Poe en Tilly Bradshaw 1 - Brandoffer, M.W. Craven | 9789024594917 | Boeken | bol
How many days until 12 December - Calendarr
Scripchat Gratis
Strange World Showtimes Near Savoy 16
Marilyn Seipt Obituary
Yale College Confidential 2027
Dhs Clio Rd Flint Mi Phone Number
Play It Again Sports Forsyth Photos
Proto Ultima Exoplating
Motor Mounts
Rock Salt Font Free by Sideshow » Font Squirrel
Atlantic Broadband Email Login Pronto
W B Crumel Funeral Home Obituaries
Crystal Mcbooty
Jewish Federation Of Greater Rochester
3400 Grams In Pounds
2008 DODGE RAM diesel for sale - Gladstone, OR - craigslist
One Main Branch Locator
Convenient Care Palmer Ma
Thelemagick Library - The New Comment to Liber AL vel Legis
2700 Yen To Usd
888-822-3743
Pathfinder Wrath Of The Righteous Tiefling Traitor
Pike County Buy Sale And Trade
About Us
How to Install JDownloader 2 on Your Synology NAS
News & Events | Pi Recordings
Das schönste Comeback des Jahres: Warum die Vengaboys nie wieder gehen dürfen
Arginina - co to jest, właściwości, zastosowanie oraz przeciwwskazania
Bellelement.com Review: Real Store or A Scam? Read This
Random Warzone 2 Loadout Generator
The 5 Types of Intimacy Every Healthy Relationship Needs | All Points North
Hampton Inn Corbin Ky Bed Bugs
Electronics coupons, offers & promotions | The Los Angeles Times
How to Find Mugshots: 11 Steps (with Pictures) - wikiHow
Olay Holiday Gift Rebate.com
Latest Posts
Article information

Author: Rob Wisoky

Last Updated:

Views: 5574

Rating: 4.8 / 5 (68 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Rob Wisoky

Birthday: 1994-09-30

Address: 5789 Michel Vista, West Domenic, OR 80464-9452

Phone: +97313824072371

Job: Education Orchestrator

Hobby: Lockpicking, Crocheting, Baton twirling, Video gaming, Jogging, Whittling, Model building

Introduction: My name is Rob Wisoky, I am a smiling, helpful, encouraging, zealous, energetic, faithful, fantastic person who loves writing and wants to share my knowledge and understanding with you.